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tion assembly shown in Fig. 5 can be used.
Although this assembly generates slightly
larger odd harmonics it is generally superior
to that of Fig. 1 because it does not generate
even harmonics. It can be shown that

Erelected = Ein sin® ¢
where
¢ == (1/4 + Omax SIN W)
and that this is identical to

Ereflected = —z—ill [1 + sin (20max sin wmt)].

REFLECTING g
PLATE N

T/4 WHEN
g=0

Fig. 5—A reflecting microwave modulator which does
not generate even harmonics.

Again using (1) of Rizzi and Rich? it can be
shown that the reflected voltage varies only
at the fundamental and odd harmonic modu-
lation rates.

Ereflected = Ein[l/z + ]1(2(9[11,11) sin wmi
+ J5(20max) sin 3wt - - -+ .

Thus, it appears that Mr. Clavin is in error
when he claims that a strong second harmon-
ic will result from a reflected voltage which
varies as the sin? ¢.

An analysis of this last equation yields
data identical to that of Fig. 2 of Rizzi and
Rich.? This figure shows how the largest
harmonic coefficients, the third and fifth,
vary with respect to the fundamental coeffi-
cient for different maximum values of 20max.
In particular this figure shows that the
third and fifth harmonics are down more
than 36 db and 55 db respectively from
the fundameatal when the maximum value
of 20m,x is less than or equal to 36°, the
value required to again reduce the funda-
mental coefficient, J1(20maz)Ein to the same
value of 0.3 E;, which corresponds to a
60 per cent modulation of a linear system.

Epwarp A. OM
Bell Telephone Labs.
Holmdel, N. J.

On Symmetrical Matching*

Mr. Mathis’ note! is correct in that a
match is achieved with the three shunt
susceptances, but he is wrong in his asser-
tion that no other positioning is possible
for match. His method of matching is out-
lined in Fig. 1.

* Received by the PGMTT, November 13, 1956.
1 H. F, Mathis, IRE TraNs., vol. MTT-4, p. 132;
April, 1956,
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The distance s is computed so that two
shunt susceptances, each of magnitude 28
will cancel each other,? thus tan 2ws/Ag
=1/B. Then susceptances of magnitude B
are spaced this distance away on either side
and match is obtained. However, match is
also obtained when tan 2ws/Ag=2/B and
thus the response is not symmetrical about
the original frequency. The match can be
checked by computing the admittance at the
center of the network with a matched termi-
nation and, if it is purely real, the network
is matched.’
¥ The response can be made to be sym-
metrical (critically coupled) provided that
the standing-wave ratios introduced by the
three susceptances go in the ratios of #, 72, r
or the susceptances go as B, Bv/B?+4, B.
The spacing p between the three suscep-
tances can be found on a Smith chart. See
Fig. 2.

Fig. 2.

A matched termination at the right of
the line makes the normalized admittance
at point ¢ 1+7B. In Fig. 2, inductive sus-
ceptances which will have negative values
are assumed. This admittance is transformed
along the line toward the generator until
the circle is tangent to the Smith chart circle
for

B
—7\/32—{-4.

The admittance at the center of the net-
work then will be purely real and chart of
the network will be the mirror image about
the real axis. Therefore,the input admittance
is matched. For small variations in length
of line p corresponding to small changes in
frequency the input admittance is still
matched since the circles are tangent. This
circuit is thus a critically-coupled double
tuned arrangement. The value of the line
length $ is given by the formula.

2wp B24-2+4+/B2 44
tan — = —

Jorx REED
Raytheon Mfig. Co.
Wayland, Mass.

2 J, Reed, “Low-Q microwave filters,” Proc. IRE,
vol. 38, p. 794; July, 1950.
3 Ibid, See (6).
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Author’'s Comment*

Mr. Reed is correct in his remarks. My
note was based on the theorem that if one-
sided matching for o lossless symmelrical
discontinuity is achieved with a lossless sym-
wmetrical matching network, the matching net-
work can be split and the part farther from
the discomtinuity moved to the opposite side
of the discontinuity to obiasn two-sided match-
ing. This theorem is correct, but all of the
conclusions in my note were not correct.

In general, either the value of the shunt
susceptances or their positions for sym-
metrical matching may be arbitrarily
selected. When the value of the shunt sus-
ceptances is selected, there may be two
pairs of positions which can be used. When
the positions are selected, there may be
two values of the shunt susceptances which
can be used.

Procedures for finding the positions or
the value of the shunt susceptances, when
the other is given, are presented next. In
the discussion which follows, it is assumed
that the voltages, currents, and impedances
are measured in units so that the character-
istic impedance of the transmission line is
one,

When the value B of the shunt suscep-
tances is selected, the discontinuity is termi-
nated in a matched load, and the input ad-
mittance Y; is determined and plotted on
a Smith chart, as shown in Fig. 3. The ad-
mittance Y3 given by the formula

16 4+ 12B2 4 3Bt — j(16F + 8B3)

o= 16 + 12B* + B¢ W

$_/

Fig. 3—Diagram for determining the positions of
shunt susceptances.

is plotted on the Smith chart. A circle is
drawn with its center at ¥, which passes
through the center C of the chart. (This
circle must also pass through the point
Y=1—j2B.) A circle is drawn with its
center at C which passes through the point
Y. The points of intersection of these circles
determine the possible pairs of positions
of the shunt susceptances. (For the second
example given by Reed, the circles are
tangent.) If the circles do not intersect, it
is not possible to use this value of B. The
distances d; and ds of these pairs of positions

4 Received by the PGMTT, November 23, 1956.
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from the discontinuity are determined on
the Smith chart as indicated in Fig. 3.

When the positions of the shunt sus-
ceptances are selected, the input admittance
g+7b at one of the positions is determined
with the opposite side of the discontinuity
terminated in a matched load. The possible
values B of the shunt susceptances are
given by the formula

b+x/gbz+(g— s
g—1

@

If B is not real, it is not possible to use
these positions.
PrOOF OF THEOREM

According to well-known circuit theory,
any lossless four-terminal network can be
represented by the matrix

(Am jAl,s)
JAs1 Az ’
where the input voltage E; and the input

current I are related to the output voltage
E; and the output current I, by the equations

El = AlleZ +jALZIZg

Il = jA2,1E2 + Az,zlz'
The symbols Ay, A1, As1, and Azs de-
note real quantities. If the network is sym-

metrical, A;,1=4s,. If the network is re-
versed, the corresponding matrix is

(Az.z jAl,z)
JAsa A Sl
If the input impedance is one when the load
impedance is one, then A;1=A42 and
A1,2=A42,1. A section of lossless transmission

line, with a characteristic impedance of
one, is represented by the matrix

( cospBd  jsinpBd
jsinBd cospd

Let the symmetrical lossless discontinu-
ity be represented by the matrix

(M iN )
iP M)’
The symmetrical one-sided lossless match-

ing network is split into two networks which
are represented by the matrices

m jn
(jP q )
sz)

The matrix for the three networks con-
nected in cascade is

(Am jALZ)
JAza Ase

m ]n)(r js)(]l[ N
Jpr q Jiou P M

Since the matching network is symmetrical,

and

mr — nl = qu — ps.

Also, since the input impedance is one when
the load impedance is one,
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A1,1 = Az,z
= (mr — nt)M — (ms + nu) P
= (qw — ps)M — (pr + ¢ON
and
ALZ = A2,1
= (ms + nuw)M + (mr — nt) N
= (pr + gf) M + (qu — ps)P.
If the part of the matching network
farther from the discontinuity is moved to

the opposite side of the discontinuity, the
matrix for the resulting network is

Bl.l jBl.2
(sz,l Bz,z)
¥oJs\N/M JjN\/m jn
=(jt u)(jP ]ll)(jp q)‘

The values of Bi1, Bz, B2, and Bs, are
given by the equations

By = (mr — ps)M — 1N — puP,

By = (nr + ¢s)M + qvN — usP,

By = (mi + pu)M — piN + mulP,

By = (qu — nt)M — @tN — nulP.
By simple algebraic manipulations, it can
be shown that the above equations require
that Bi,1=Bs,s and By,s=B,,1. Consequently,
if the load impedance is one, the input
impedance is one. This completes the proof
of the theorem.

Next, symmetrical matching is con-

sidered. In this case, the matrix for the com-
bined network is

Cia jCie
(jcz,l Cm)
m g\ (M JN\ fq Jn
- (jp q ) (jP M) (j;: m)'
Since C1,2=C2,1,

2mnM + m2N — n2C = 2pgM — pN + ¢°P.

If the right-hand network is moved to the
left with a section of lossless transmission
line between the two matching networks,
the corresponding matrix is

Dlyl jDI 2
(jD2,1 D2 )
cosBd jsinpd
’ (j sinBd cosBd

]P m

m ]n) (ﬂl N )

Jb q M/
If 8d is chosen so that Dy,1=Das,, then it can
be shown by simple algebraic manipulations
that D;s=D;;. Consequently, if symmet-
rical two-sided matching can be achieved,
there exists a corresponding one-sided sym-
metrical matching network. So the pro-
cedures given above yield all possible sym-

metrical matching networks of the type
considered.

DERIVATION OF PROCEDURES

According to the above theorem, if
Ya=1 for the circuit shown in Fig. 4,
then ¥g=1 for the circuit shown in Fig. 5.
1t may be observed that the dimension ds
does not appear in Fig. 5.

For the circuit shown in Fig. 4, let
Y1 denote the admittance at the input of
the loss ess discontinuity, ¥, denote the

April
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Fig. 4—One-sided matching.
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Fig. 5—Two-sided matching.
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admittance immediately to the right of
the right shunt susceptance, ¥; denote the
admittance immediately to the left of the
right shunt susceptance, and ¥, denote the
admittance immediately to the right of the
left shunt susceptance. Let ¥, =g+jb. Now

=g+j(b+B). In order for the left shunt
susceptance to complete the match, Y,=1
—jB. Three sets of these admittances are
shown plotted on Smith charts in Figs. 6 and
7. (For these illustrations, the discontinuity
consists of a shunt susceptance whose value
is 1.6.)

The point ¥; must lie on the circle C;
through Y. whose center is at C. Let C» de-
note the circle which is obtained by sub-
tracting 7B from the admittances on the
circle €. Since ¥=1+3B lies on Gy, Y=1
must lie on G, i.e., the circle C» must pass
through C. The point ¥, must lie on C,. The
point ¥, must also lie on the circle C;
through ¥; whose center is at C. The dis-
tances d; and ds are indicated by the angles
£LY,CY, and £LY,CY,, respectively.

For a given value of B, the circle C; is
fixed. In general, the circle C; intersects the
circle Cs at two points. This is illustrated
in Figs. 3 and 6. The value of B is the same
for Figs. 6(a) and (b), but d, and d; are
different. (For Fig. 6, Y1=1+j1.6 and
B=1.)

The circle C; can be drawn by finding at
least three points on it by subtracting jB
from the admittances for points on the circle
C1, and then drawing a circle through these
points. However, it is more convenient to
compute the center of the circle. In the
T-plane, the center of the circle is at I'=0
and the radius of this circle is

B
VAT B
The bilinear transformation?
14T
=1
Y plane. The center of C; is at
_ 2+ B2
T2

and the radius of Cy is

BVA+ B?
2
The circle Cs in the Y plane is found by

subtracting jB from the admittances on Ci.
The center of Cs is at

s H. F. Mathis, “Bilinear transformations,” IRE
TrANS,, vol. CT-3, p. 156; June, 1956.
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(b)

Fig. 7—Diagram illus&rating matching with
X 1.

2+ B2
Y= +2 - jB

and the radius of Csis the same as the radius
of Cs. The transformation

Y-1
Y+l

maps the circle C; into the circle C; in the
T plane. The center of the circle C; is at

Correspondence

_ B*—i2B

T 442B?
The corresponding admittance of the center
of Cyis

16+ 12B2 4 3B* — j(16B + 8BY) a
B 16 + 12B2 + B4 )

Let I, and T, denote the current reflec-
tion coefficients corresponding to ¥; and
Y., respectively. The values of I'; and I, are
given by the equations

gt 0+ B) —1

=-=

§+j+B)+1

Since Y, and ¥, lie on the circle Cy,
(g— 12+ (b + B)?

This equation can be solved for B to obtain
(2). If g=1, it is obvious that 2B = —b.
Thus for a given d; and the corresponding
Y,=g-+7b, there are generally two possible
values of B. This is illustrated in Figs. 6(a)
and 7 where the value of Y, is the same but
the values of B are different. [For Fig. 6(a),
Ys=1.9—j2and B=1.For Fig. 7,B=—54.]
Harorp F, MaTtHIS

Goodyear Aircraft Corp.

Akron, Ohio

Letter from Mr. Reed"

Mr. Mathis’ theorem is correct but the
procedure resulting from this theorem doeg
not give a good result from an engineering
standpoint. The result of what he calls two-
sided matching will give a match not only
at the design center frequency, but also at
some other frequency. Thus, the perform-
ance curve will #not be symmetrical about
the design center. The procedure suggested
in my last note would give a symmetrical
curve with maximally-flat response in which
the two frequencies of match are the same.

Suppose it is desired to cancel out an
inductive iris which has a normalized sus-
ceptance of —2. The reflection from this can
be cancelled out by the use of another iris
whose susceptance is also —2 spaced down
the line toward the generator by three-
eighths of a wavelength.

Thus, according to his theorem, we can
split the matching into two susceptances of
—1 on either side of the susceptance of —2
spaced 0.375 Ag (tan 2xs/Ag=—1) of a
wavelength from it. But match would also
occur if the spacing were 0.3245 Ag(tan
2ws/Ag= —2).

For critical couplingB /B?+44 is set
equal to —2 and the resulting equation
solved for B giving B to —0.91018. This
value of B is inserted into the formula for
b, thus resulting in this case of a value of
equal to 0.3465)g. See Fig. 8.

6 Received by the PGMTT, December 19, 1956.
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Fig. 8.

F® Approximate performarce curves for
one-sided matching, two-sided matching
using the Mathis theory, and critically
coupled performance as described above are
shown below. Some improvements in the
critically coupled performance can be ob-
tained by letting the midband be mis-
matched but be matched on either side ot the
design frequency. See Fig. 9 below.

VSWR

FREQUENCY
Fig. 9.

Jou~n RrED

Author's Comment”

I agree with the remarks in Mr. Reed’s
recent note. In my original brief notes, I did
not consider the effects of varying the fre-
quency. His two notes are most interesting
and valuable. I do not think that I can add
anything of value.

H. F. MaTtuts

7 Received by the PGMTT, January 27, 1957.

The Available Power of a Matched
Generator from the Measured Load
Power in the Presence of Small
Dissipation and Mismatch of the
Connecting Network*

It is sometimes necessary to determine
the available power of a matched generator
in terms of the power dissipated in aload
when the load is connected to the generator
by means of a slightly mismatched 4-pole
having small loss. (A piece of waveguide or
short length of coaxial line could exemplify
such a 4-pole; the discontinuities at flanges
or at connectors and supporting beads could
give rise to the slight mismatch.)

* Received by the PGMTT, October 1, 1956. The
research reported in this document has been made pos-
sible through support and sponsorship extended by the
Rome Air Dev, Ctr,, Contract AF-30(602)-988. Tt is
published for technical information only and does not
represent recommendations or conclusions of the spon-
soring agency,



